理工学院智能光电器件与量子检测技术团队在光学模拟计算领域取得重要进展
理工学院智能光电器件与量子检测技术团队在光学模拟计算领域取得重要进展
近日,暨南大学理工学院智能光电器件与量子检测技术团队提出了一种基于单轴晶体的非相干光学模拟微分模块,实现了未染色洋葱细胞和生物透明活细胞的高质量相衬显微成像。相关成果以“Optical Phase Contrast Microscopy with Incoherent Vortex Phase”为题发表在Laser & Photonics Reviews(中科院一区Top,IF=10.947)上。理工学院必赢76net线路研究生赵梦婷、梁信洲为论文的共同第一作者,朱文国副教授为通讯作者。
朱文国副教授(中)指导赵梦婷和梁信洲做实验
通过光波快速可靠地检测和识别物体是光学成像、机器学习和人工智能的基本关键。光学相衬成像不仅可以实现幅度图案的边缘增强,还可以将不可见的相位图案转化为强度信息,是物体检测和识别最有效的方法之一,在生物成像方面应用广泛。相比于传统的Zernike 相衬显微法和Nomarski 微分干涉法,最近发展起来的光学模拟空间微分法由于其二维各向同性的边缘增强特性及相对紧凑的光学结构受到人们的重视。但是,目前光学空间微分法尚存在结构复杂、不易制备,与传统光学显微镜不兼容,需要相干光源照明等不足之处。
为了解决上述问题,朱文国研究团队选用科勒照明搭建倒置显微系统,以避免LED光源空间非相干性导致的相位模糊效应对光学模拟微分产生影响。在未放样品情况下,照明光被准直进CCD相机,因而由单轴晶体所产的波矢空间调制效应能够在CCD平面保持,而不被模糊掉。此外,团队构建了由薄单轴晶体(厚度1mm)和两偏振片组成的光学微分(相衬显微)模块,见图1(a)。该模块可放置在筒镜与CCD相机间的任意位置上。旋转偏振片、改变晶体倾斜角度选择性地利用单轴晶体的几何相位和透射系数的角度色散,可实现一维、二维和二阶微分成像及明场成像间的自由切换,如图1(b)所示。微分成像的空间分辨率由成像系统决定,与光学微分模块无关。实验上,我们展示了USAF 1951分辨率板最细线条(线宽0.755μm)的微分成像。
图1. (a)包含光学微分模块的光学相衬显微镜;(b)矩形物体的明场、一维、二维和二阶微分成像;(c)分辨率板的二维微分成像;(d)沿图(c)红线的光强分布。
图2给出了明场成像和光学微分成像对于强度目标和相位目标的成像效果对比图。光学微分成像可将未染色洋葱细胞细胞壁相对于背景的对比度从明场成像的~1.2提升至~22,有利于细胞形貌的识别。对于透明活细胞NIH-3T3,明场下几乎看不见。但在光学微分成像模式下,其轮廓清晰可见,并具有较高的对比度。本工作为基于非相干光源的光学模拟计算开辟了道路,并促进了多功能、紧凑、低成本和高性能相衬显微技术的发展。
图2. 未染色洋葱细胞(a-c)和NIH-3T3活细胞(d-f)明场成像(a,d)和光学微分成像图(b,e)。(c,f)沿图(a,b,d,e)白线的光强分布。
本工作得到了国家自然科学基金项目及省、市科研基金的资助。
文章链接:https://doi.org/10.1002/lpor.202200230